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Abstract In this paper we show how to express ordered median problems as a difference
between two convex functions (DC). Such an expression can be exploited in solving ordered
median problems by using the special methodology available for DC optimization. The
approach is demonstrated for solving ordered one median problems in the plane. Computa-
tional experiments demonstrated the effectiveness of the approach.
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1 Introduction

Continuous location has achieved an important degree of maturity. It is demonstrated by
the large number of papers and research books published within this field. In addition, this
development has also been recognized by the mathematical community by assigning the
AMS code 90B85 to this area of research. Continuous location problems appear very often
in economic models of distribution or logistics, in statistics when one tries to find an esti-
mator from a data set or in pure optimization problems where one looks for optimizing a
certain function. For a comprehensive overview the reader is referred to [2] or [11] . Despite
the fact that many continuous location problems rely heavily on a common framework, spe-
cific solution approaches have been developed for each of the typical objective functions in
location theory. To overcome this inflexibility and to work towards a unified approach to
location theory models the so called Ordered Median Problem (OMP) was developed (see
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[9] and references therein). Ordered Median Problems represent as special cases many of the
classical objective functions in location theory, including the Median, Cent-Dian, center and
k-centra.

The 1-facility Ordered Median Problem in the plane can be formulated as follows: A vec-
tor of weights λ1, λ2 . . . λn , where n is the number of demand points, is given. The distances
between the demand points and the facility are sorted in a non-decreasing order. Note that the
order depends on the location of the facility. The problem is to find a location for a facility
that minimizes the weighted sum of distances where the distance to the closest point to the
facility is multiplied by the weight λ1, the distance to the second closest by λ2, and so on.
The distance to the farthest point is multiplied by λn .

Many location problems can be formulated as the Ordered One-Median Problem by select-
ing appropriate weights. For example, the vector for which all λi = 1 is the unweighted
1-median problem, the problem where λn = 1 and all others are equal to zero is the one
center problem. Minimizing the range of distances is achieved by λ1 = −1 and λn = 1 and
all others are equal to zero. Minimizing the median of distances is achieved by λ(n+1)/2 = 1
for odd n and λn/2 = λn/2+1 = 0.5 for even n and all others are equal to zero. In a recent
paper [5] the OMP approach is used to minimize the Gini coefficient of the Lorenz curve.

Solution methods for continuous OMPs so far have been mainly discretization results
obtaining finite dominating sets (see [12]). Moreover, a linear programming approach for
some OMPs was developed (see [8]). Recently [3] developed an efficient method for the
OMP using the Big Triangle Small Triangle approach [1,4]. The objective function is convex
if and only if 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn [9]. However, until now no proper embedding of the
continuous OMP (as a global optimization problem) into the global optimization literature
has been done.

This paper shows that the OMP belongs to the class of d.c. optimization problems [6]. It is
pointed out in [7] that from the theoretical viewpoint the class of d.c. functions, i.e., functions
that can be represented as difference between two convex functions, enjoys a remarkable sta-
bility with respect to operations frequently encountered in optimization. For example, the
class of d.c. functions is closed under operations such as sum, multiplication, multiplication
with a scalar (positive or negative), maximum and minimum of a finite number of functions,
etc. Moreover, we know that every locally d.c. function, is also d.c. in the whole space. From
this it can easily be deduced, for example, that every C2-function (a function possessing a
continuous second derivative) is d.c. However, Ordered Median Problems are not C2 func-
tions. At points where the order of distances is changed, the first derivative may not exist.
For example, the function of the maximum distance to a set of points is continuous, but at
points where the maximum distance is obtained for at least two points, the first derivative of
the maximum distance may be discontinuous.

The main concern when using these properties is how to construct a d.c. representation
of a function which is known to be a d.c. function but not given in d.c. form. This problem
of finding appropriate d.c. representations is not yet solved for broad classes of d.c. func-
tions [7]. We will present a constructive way of transforming a standard OMP into a d.c.
problem. Moreover, we will prove the usefulness of the d.c. method by extensive numerical
tests.

The rest of the paper is organized as follows: After restating some needed definitions
and concepts we demonstrate how we derive a d.c. decomposition from the OMP. Different
lower bounds for the planar single facility OMP as well as solution procedures are then
developed in Sect. 3. Section 4 is devoted to extensive numerical experiments using the
bounds from Sect. 3. The paper concludes with some discussion and an outlook to future
research.
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2 Deriving DC decomposition

The purpose of this paper is to show how every Ordered (One)-Median Problem can be
expressed as a difference between two convex functions (DC). Once this is done, strong opti-
mization techniques borrowed from DC-optimization can be employed to solve any Ordered
Median Problem.

2.1 Notation

Let
n be the number of demand points,
Xi = (xi , yi ) be the location of demand point i , 1 ≤ i ≤ n,
X = (x, y) be a point in the plane,
di (X) be the distance between demand point i and point X ,
d(i)(X) be the sorted vector of distances (d(i)(X) ≤ d(i+1)(X)),
λ = {λi } be the vector of Ordered Median weights.

The objective function to be minimized, F(λ, X), is:

F(λ, X) =
n∑

i=1

λi d(i)(X) (1)

The distances di (X) can be Rectilinear, Euclidean, �p or any other convex distances in any
dimensional space. The theory developed in this paper holds for any convex functions di (X),
not necessarily functions based on norms.

2.2 Derivation

Theorem 1.3 in [9] states

Theorem 1 An Ordered Median function is convex if and only if λi ≥ 0 and λi−1 ≤ λi .

Let us first assume λi ≥ 0. Let sk =
k∑

i=1
λi , also define s0 = 0. Define αk = sk and

βk = sk−1. It can be easily verified that

(i) λk = αk − βk .
(ii) 0 ≤ αk ≤ αk+1 and 0 ≤ βk ≤ βk+1.

(iii) Therefore,
n∑

i=1
αi d(i)(X) and

n∑
i=1

βi d(i)(X) are both convex functions by Theorem 1.

(iv) The Ordered Median function is thus expressed as a difference between two convex
functions.

If there are negative λs, let λmin = min{λi }. Define λ′
i = λi − λmin and µi = −λmin,

then λi = λ′
i − µi . The vector µ defines a convex function by Theorem 1, and the vector λ′

i
is expressed as a difference between two convex functions as described above. The function
defined by µ is added to the function defined by β yielding a convex function because a sum
of two convex functions is convex. The result is a difference between two convex functions.

This actually accomplishes our goal. However, the vectors α and β can possibly be reduced
to eliminate redundancy. In particular, let λi = αi −βi fulfilling αi ≥ 0, βi ≥ 0 and αi ≤ αi+1

and βi ≤ βi+1. We wish to find a vector γ ≥ 0 (with maximum possible values) such that
α′

i = αi − γi and β ′
i = βi − γi have the same properties.
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For γ1 we must have α1 − γ1 ≥ 0 and β1 − γ1 ≥ 0, therefore γ1 = min{α1, β1}. Note
that α1 ≤ α2 and β1 ≤ β2 must remain true. For each k = 2, . . . , n in order determine γk as
follows. Four conditions must hold. αk − γk ≥ 0; βk − γk ≥ 0; αk − γk ≥ αk−1 − γk−1 ≥ 0;
βk − γk ≥ βk−1 − γk−1 ≥ 0. This leads to:

γk = min {αk, βk, αk − αk−1 + γk−1, βk − βk−1 + γk−1}
This condition can be simplified by observing that γk−1 ≤ αk−1 and thus αk −αk−1 +γk−1 ≤
αk and the same for βk . Therefore,

γk = min {αk − αk−1 + γk−1, βk − βk−1 + γk−1}
= min

{
αk − α′

k−1, βk − β ′
k−1

}
(2)

The following process finds the vectors α′ and β ′.

The Updating Process

1. Set α′
0 = β ′

0 = 0
2. For k = 1, . . . , n in order update:
3. γk = min{αk − α′

k−1, βk − β ′
k−1}

4. α′
k = αk − γk

5. β ′
k = βk − γk

Lemma 1 α′
1 ≥ 0 and β ′

1 ≥ 0.

Proof Since γ1 ≤ α1, α′
1 = α1 − γ1 ≥ 0 and the same for β ′

1.

Lemma 2 α′
i−1 ≤ α′

i and β ′
i−1 ≤ β ′

i .

Proof By (2): α′
i = αi − γi ≥ αi − (αi − α′

i−1) = α′
i−1 and the same for β.

Theorem 2 Both F(α′, X) and F(β ′, X) are convex.

Proof Follows Lemma 1, Lemma 2, and Theorem 1.

Theorem 3 Every Ordered Median function can be expressed as a difference between two
convex functions.

Proof Follows F(λ, X) = F(α′, X) − F(β ′, X) and Theorem 2.

2.3 Examples

2.3.1 Truncated mean

λ = {0, 0, 0, 1, 1, 1, 1, 0, 0, 0}.
s = {0, 0, 0, 1, 2, 3, 4, 4, 4, 4}
α = {0, 0, 0, 1, 2, 3, 4, 4, 4, 4}
β = {0, 0, 0, 0, 1, 2, 3, 4, 4, 4}
and after updating
α′ = {0, 0, 0, 1, 1, 1, 1, 1, 1, 1}
β ′ = {0, 0, 0, 0, 0, 0, 0, 1, 1, 1}
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2.3.2 Range

λ = {−1, 0, 0, 0, 0, 1}
After subtracting λmin

λ′ = {0, 1, 1, 1, 1, 2}
s = {0, 1, 2, 3, 4, 6}
α = {0, 1, 2, 3, 4, 6}
β + µ = {1, 1, 2, 3, 4, 5}
and after updating
α′ = {0, 1, 1, 1, 1, 2}
β ′ = {1, 1, 1, 1, 1, 1}

3 Planar One Median Problems

The proposed DC decomposition is illustrated and tested for the solution of Ordered One
Median Problems in the plane [3]. In [3] it was proposed to solve the Ordered One Median
Problem in the plane by using the Big Triangle Small Triangle method [4]. Following is a
short description of the BTST method.

3.1 The BTST approach

The method is described for a minimization problem. For maximization problems the role of
the lower and upper bounds are reversed. A feasible region which consists of a finite number
of convex polygons is given.

Phase 1: Each convex polygon is triangulated using the Delaunay triangulation. The vertices
of the triangles are the demand points and the vertices of the convex polygon. The
union of the triangulations is the initial set of triangles.

Phase 2: Calculate an upper bound, U B, and a lower bound, L B, for each triangle. Let the
largest L B be L B. Discard all triangles for which U B ≤ L B(1 + ε).

Phase 3: Choose the triangle with the largest L B and divide it into four small triangles
by connecting the centers of its sides. Calculate U B and L B for each triangle,
and update the L B if necessary. The large triangle and all triangles for which
U B ≥ L B(1 + ε) are discarded.

Stopping Criterion: The branch and bound is terminated when there are no triangles left. The
solution L B is within a relative accuracy of ε from the optimum.

Note that: (i) A lower bound in a triangle is the value of the objective function at any point in
the triangle (such as the center of gravity). (ii) Since the triangulation is based on the demand
points as vertices, no demand point is in the interior of a triangle. This is also true for all
triangles generated in the process.

3.2 A DC based lower bound

The objective function is expressed by a difference of two convex functions F(λ, X) =
F1(α, X) − F2(β, X). Let X0 be the center of the triangle (unweighted center of gravity of
the three vertices). The tangent plane, G(α, X), of the function F1(α, X) at X0 is constructed.
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G(α, X) = F1(α, X0) + (x − x0)

n∑

i=1

αi
x(i) − x0

d(i)(X0)
+ (y − y0)

n∑

i=1

αi
y(i) − y0

d(i)(X0)
. (3)

Note that the order (i) in Eq. 3 is the order of the distances at X0.
Since F1(α, X) is convex, G(α, X) ≤ F1(α, X) and therefore F(λ, X) = F1(α, X) −

F2(β, X) ≥ G(α, X) − F2(β, X). The function H(X) = G(α, X) − F2(β, X) is concave
because G(α, X) is linear and F2(β, X) is convex. The function H(X) obtains its minimum
on one of the vertices of the triangle. Let the three vertices of the triangle be V1, V2, V3, then
H(X) ≥ min

k=1,2,3
{H(Vk)}.

The DC lower bound is therefore

L BDC = min
k = 1,2,3

{H(Vk)} (4)

3.3 A lower bound for a ratio

There are instances where the objective function is a ratio of an Ordered Median objective
and another function D(X). For example, the Gini coefficient objective [5] is a ratio of an
Ordered Median objective and the sum of all distances. Other examples are the ratio between
the maximum distance and the average distance, range and the average distance, truncated
mean and the average distance. In such instances, when both the Ordered Median objective
and the denominator are positive, a lower bound can be constructed by any lower bound
on the Ordered Median objective divided by the maximum value of D(X) in the triangle
(if the Ordered Median objective is negative, then the minimum of D(X) in the triangle is
required). Such a lower bound was proposed in [5] for the solution of the minimization of
the Gini coefficient. However, such a lower bound may not be that tight because the lower
bound of the numerator may be calculated at one vertex of the triangle while the maximum
of D(X) may be calculated at another vertex. The lower bound L BDC (4) is based on the
function H(X) which is a concave function. If D(X) is convex, and both are positive, then
the following theorem can be used to tighten such a lower bound.

Theorem 4 Let f (x) > 0 be a concave function and g(x) > 0 be a convex function. Then,
f (x)
g(x)

is quasi-concave.

Proof Quasi concavity of the ratio means that for every 0 ≤ λ ≤ 1 and two points x and y:

f (λx + (1 − λ)y)

g(λx + (1 − λ)y)
≥ min

{
f (x)

g(x)
,

f (y)

g(y)

}
.

Suppose that f (x)
g(x)

≤ f (y)
g(y)

and the same argument holds for the opposite case. It follows that

f (y) ≥ f (x)g(y)
g(x)

. Therefore,

f (λx + (1 − λ)y)

g(λx + (1 − λ)y)
≥ λ f (x) + (1 − λ) f (y)

λg(x) + (1 − λ)g(y)

≥ λ f (x) + (1 − λ)
f (x)g(y)

g(x)

λg(x) + (1 − λ)g(y)

= f (x)

g(x)

λ + (1 − λ)
g(y)
g(x)

λ + (1 − λ)
g(y)
g(x)

= f (x)

g(x)
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which proves the quasi-concavity of the ratio.
Since the ratio H(X)

D(X)
is quasi-concave, it attains its minimum in a triangle at a vertex of

the triangle. Therefore, instead of finding the minimum value of H(X) among the vertices
of the triangle and dividing it by the maximum value of D(X) in the triangle, the minimum
value of H(X)

D(X)
among the three vertices is a tighter lower bound. This is usually a tighter

lower bound because the numerator and the denominator are evaluated at the same vertex.
We term this lower bound L BRat . Note that this approach cannot be implemented for the
lower bounds suggested in Drezner and Nickel [3] because those lower bounds are not based
on a concave function and Theorem 4 does not apply.

3.4 Saving calculation time of the DC lower bound

Most of the computer time in calculating the DC lower bound is consumed by sorting vectors
of distances. The vectors of the distances to the center of the triangle and its three vertices
require sorting. Run time was decreased by more than 50% by employing the following strat-
egy. The distances vector to the center of the triangle is sorted. Once the order is determined,
the three vectors of the distances to the vertices of the triangle are re-ordered by the same
order before the sorting procedure is applied. Since the four vectors of distances are not much
different from one another, the reordered vectors are “almost” sorted and the sort procedure is
much faster. Note that all four vectors are sorted properly. Time is saved because three of the
four sorts require very little effort. This simple ploy reduced the run time of the procedure by
more than 50% compared with performing four sorting procedures on the original distance
vectors.

4 Computational experiments

We compared the efficiency of the DC lower bound on the nine problems tested in [3] and
the two problems tested in [5] with the results reported there. There are several lower bounds
developed in [3]. Three variants of the best lower bound are used for comparison. They
are based on the shortest possible distance δi between demand point i and any point in the
triangle [1] and the longest possible distance �i which is measured to one of the three ver-
tices. These are defined as the vectors δ and �, respectively. For a point X in the triangle,
δi ≤ di (X) ≤ �i . The lower bound L B3 is [3]:

L B3 =
n∑

i=1

[
max{λi , 0}δ(i) + min{λi , 0}�(i)

]
(5)

The lower bounds L B1 and L B2 are special cases of L B3. L B1 is defined for λi ≥ 0 when
�i is not required for calculating (5). Similarly, L B2 is defined for λi ≤ 0 when δi is not
required for calculating (5).

Programs in Fortran1 using double precision arithmetic were coded, compiled by the Intel
9.0 FORTRAN Compiler, and ran on a 2.8 GHz Pentium IV desk top computer with 256 MB
RAM. The programs written for this paper required few modifications of the programs coded
for the [3] paper. They were run on the same platform. Therefore, for comparison purposes
it is sufficient to compare the run times recorded for the solution of the different problems.

1 We thank Atsuo Suzuki for his Fortran program that finds the triangulation based on [13] subroutines first
developed in [10].
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Fig. 2 Comparing the lower bounds for k-centra

In Figs. 1–9 the performance of the algorithms on the nine problems suggested in [3] is
reported. For each problem size we ran 10 randomly generated instances. We used a relative
accuracy of at least ε = 10−8 except when the accuracy used in [3] was lower. In [3] many
problems were solved to an accuracy as high as ε = 10−4. Lower accuracy required the
storage of more than 500,000 triangles which is the capacity of the program. Therefore, these
problems could not be solved to a lower accuracy. These problems could not be practically
solved to a better accuracy by the lower bounds in [3]. When a problem is solvable to within
an accuracy of ε = 10−8 by employing the DC bound while the lower bounds suggested in
[3] failed to do so, the DC bound is superior for such problems regardless of the run times.

In Figs. 10–12 comparison of the performance of the algorithms for solving problems with
the two objectives related to the Lorenz curve [5] is reported. The mean difference objective
is an Ordered One Median Problem and is grouped with the nine problems in Figs. 1–9
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Fig. 4 Comparing the lower bounds for truncated mean

leading to a comparison between the performance of the lower bounds for ten ordered one
median problems.

Consider solutions of n = 10, 000 problems reported in Table 2. We observe that four
problems were solved in about 5 min to a relative accuracy of ε = 10−8 or better. Only one
of these problems was solved in a slightly shorter time by L B2. The other three problems
were originally solved only to an accuracy of ε = 10−4 and took much longer to solve.
Three problems were solved to a better accuracy but required significantly longer run time.
One problem (random) was solved to a better accuracy in a shorter time, and two problems
required significantly longer time to achieve the same accuracy. Since being able to achieve
better accuracy is an improvement, the DC bound performed better in solving seven of the
ten problems, tied on one problem, and performed worse on two problems. If minimizing the
Gini coefficient is included (Figs. 11–12), the DC lower bound performed better in solving
eight of the eleven problems, tied in performance on one problem, and performed worse on
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Fig. 6 Comparing the lower bounds for median with Theorem 2

two problems. Also, we observe that the run times by the DC lower bound are less variable
than those reported in [5,3]. The range of times is hardly noticeable for the DC lower bound.

4.1 Analysis of the DC bound’s performance

The DC bound performed consistently well but for some problems the lower bounds suggested
in [3] performed better. We analyze the structure of the problems to identify the structures
that lead to such differences in performance. We suspect that those differences stem from the
possibility that a vector λ, that may have very few non-zero elements, is decomposed into two
vectors α and β each having many non-zero elements. The difference in the values between
the tangent plane G(α, X) and F1(α, X) depends on the number of non-zero αs or their sum.
We therefore evaluated some measures of the problems in order to be able to draw some
conclusions. The following measures were calculated for n = 10, n = 100, n = 1, 000, and
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n = 10, 000 problems:

θ1 =
n∑

i=1

|λi |, θ2 =
n∑

i=1

(αi + βi ) (6)

and their ratio. These measures are depicted in Table 1 for the ten Ordered One Median
Problems tested in this paper.

By examining Table 1 we conclude that the four problems with a low ratio of θ2/θ1 (less
than 20 for n = 10, 000) are the only ones that were solved in about 5 min for the n = 10, 000
problems. All other problems (for n = 10, 000) were solved in more than half an hour. Also,
problems with a small value of θ1 (one or two), and a large value of θ2 require longer run time
by the DC bound. However, in some cases a better accuracy can be achieved by employing
the DC bound.
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Fig. 9 Comparing the lower bounds for expropriation

Mean difference
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Fig. 10 Comparing the lower bounds for mean difference

4.2 Comparing performance of the DC bound on Lorenz problems

In [5] two problems were solved: (i) Minimizing the mean difference objective, which is
the sum of all the differences between pairs of distances divided by n and (ii) minimizing
the Gini coefficient which is the ratio between the mean difference objective and the sum of
the distances. As is shown in [5], the mean difference objective is an Ordered One Median
function with the weights λi = 2i−1

n − 1. Therefore, L BDC applies directly to solving this
problem.

The Gini coefficient objective Gini(X) is a ratio between an Ordered Median objective
and the sum of distances which can be converted to a difference between convex functions
divided by a convex function.
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Gini Coefficient
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Fig. 11 Comparing the lower bounds for Gini coefficient with L B3 and L BRat

Gini Coefficient
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10 20 50 100 200 500 1,000 2,000 5,000 10,000

Fig. 12 Comparing the lower bounds for Gini coefficient with L BDC , ε = 10−5 and L BDC , ε = 10−6

Gini(X) =

n∑
i=1

[ 2i−1
n − 1

]
d(i)(X)

n∑
i=1

di (X)

(7)

Therefore, as suggested in [5], L BDC for the numerator divided by the maximum sum of
distances to the three vertices is a lower bound for the Gini coefficient objective. However,
by the analysis in Sect. 3.3 a better lower bound L BRat is suggested. We therefore compared
the performance of the algorithms in [5] with both lower bounds.

Comparative results are depicted in Figs. 10–12. The mean difference objective was solved
much faster to a much better accuracy (using ε = 10−8 rather than ε = 10−4 used in [5]). The
Gini coefficient results where compared with L BRat using ε = 10−8 rather than ε = 10−4

used in [5]. For comparison, we also report the results of L BDC for ε = 10−5, 10−6. Run
times are, again, much faster solving the problems to a better accuracy.
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Table 1 Problems’ measures

Problem
name

n = 10 n = 100 n = 1,000 n = 10,000

θ1 θ2 θ2/θ1 θ1 θ2 θ2/θ1 θ1 θ2 θ2/θ1 θ1 θ2 θ2/θ1

Random 4.8 24 5.03 49.2 1,755 35.7 499 165,844 332.6 4,996 16,725,796 3,348
k-centra 5 5 1 10 10 1 100 100 1 1,000 1,000 1
Anti

k-centrum
5 15 3 10 190 19 100 1,900 19 1,000 19,000 19

Truncated
mean

6 10 1.67 60 100 1.67 600 1,000 1.67 6,000 10,000 1.67

Median
(no Th2)

1 9 9 1 99 99 1 999 999 1 9,999 9,999

Median
(using Th2)

1 5 5 1 50 50 1 500 500 1 5,000 5,000

Range 2 20 10 2 200 100 2 2,000 1,000 2 20,000 10,000
Inter-quartile 2 24 12 2 202 101 2 2,000 1,000 2 20,000 10,000
Expropriation 1 15 15 1 159 159 1 1,599 1,599 1 15,999 15,999
Mean

difference
5 18 3.6 50 198 3.96 500 1,998 3.996 5,000 19,998 3.9996

Table 2 Comparison between average run times for n = 10,000 problems

Problem L BDC L B1,2,or3

ε Time (s) ε Time (s)

Random 10−8 5,748.85 10−5 17,971.63
k-centra 10−8 286.12 10−4 598.44
Anti k-centrum 10−10 303.69 10−10 268.92
Truncated mean 10−8 291.43 10−4 6,981.73
Median (no Th2) 10−8 9,310.75 10−4 576.82
Median (using Th2) 10−8 18,513.84 10−8 589.30
Range 10−8 1,973.02 10−6 417.48
Inter-quartile 10−8 10,440.21 10−6 677.27
Expropriation 10−10 2,324.41 10−10 263.40
Mean difference 10−8 286.84 10−4 5,715.25

5 Conclusions

We showed that every Ordered Median function can be expressed as a difference of two
convex functions (DC). Therefore, general approaches for DC optimization can be applied
to solving Ordered Median Problems.

This approach is illustrated for the solution of the Ordered One Median Problem in the
plane. A general lower bound based on the DC decomposition is constructed for the values
of the objective function in a triangle. The BTST approach [4] is then applied to optimally
solve Ordered One Median Problems in the plane. Computational experiments demonstrated
that the new lower bound is more effective than the lower bounds suggested in [3] for most
tested problems. The new lower bound is especially effective when the ratio θ2/θ1 (see Eq. 6
and Table 2) is low.
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